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1. INTRODUCTION

High performance LOVA propelling charges have been proposed to replace the

conventional propelling charges in use for the 25-mm cannon system mounted on

the Bradley Fighting Vehicle to reduce the vulnerability of the vehicle. As

part of the effort in developing the low-vulnerability ammunition, charge

ignition studies and interior ballistic simulations have been conducted. The

ignition studies have been carried out via a gun simulator and the ballistic

simulation., have been performed utilizing the XNOVAKTC (XKTC) code (Gough

1990). While the simulator diagnostics provide insights into the phenomena

occurring in the ignition phase, the computer simulations can evaluate the

ballistic performance. These two efforts are to establish a guideline for

selection of an effective ignition system and a LOVA propelling charge for the

cannon system. The present report focuses on the computer simulation work,

while the experimental simulator diagnostics study has been reported in Chang

and Bonanno (1987).

In the simulator diagnostics, the ignition phenomena resulting from the

use of three different primer configurations (designated MKO, MKI, and MK2)

were investigated. Figure 1 depicts these primers when inserted into the

cartridge case base. The MKO primer was simply the standard M115 primer used

in the conventional 25-mm cannon ammunition. The MKI and MK2 primers were

constructed by adding a tube 24.5 mm in length and a tube 50 mm in length,

respectively, to the forward end of the M115 primer. As shown in Figure 2,

there were vent holes in the tube body and the tip. The vented primer tube was

designed to locate the ignition source closer to the midsection of the pro-

pellant bed and to initially ignite more propellant so as to achieve more

effective ignition. There were 2 and 4 BKNO 3 pellets inserted into the MKI

and MK2 primer tubes, respectively, to enhance the output of igniter gases.

The resultant pressure-time traces obtained in the simulator diagnostics

(Chang and Bonanno 1987) are displayed in Figure 3. The data show that an

addition of the vented tube intruding into the propellant bed resulted in a

substantial improvement in uniformity of the chamber pressure distribution

during the early-phase interior ballistic cycle. Furthermore, in the

diagnostics it was observed that the flamespreading along the propellant bed

was significantly improved and the compaction of the bed was noticeably

reduced. All of these are desired ignition characteristics which may lead to



good ballistic performance.

The objective of the present computer simulations is to examine the

resultant ballistic performance from the three primer configurations and to

compare two propelling charges of interest for their ballistic responses to

primer configuration. In the simulations, the XKTC code is employed to take

advantage of its two important features. One is that it permits the output

rate of igniter gases to be specified as a function of time as well as loca-

tion along the propellant bed. The other is its capability to account for

intrusion of the projectile afterbody. In recent years, it has been suggested

that gas-phase chemical kinetics may play an important role in the interaction

between the combustion products of igniter material and the LOVA propellant

(Keller and Horst 1987). However, the exact mechanism involved in the inter-

action remains unclear. Therefore, no consideration of finite-rate chemical

kinetics is included in this work.

M115 Primer

Figure 1. Primer Configurations.
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Figure 2. Vented Tubes in MK1 and MK2 Primers.
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Figure 3. Pressure Data for LOVA Charges Fired

in Gun Simulator at Ambient Temperature.

2. MODELING

2.1 Representation of Gun Chamber Configuration. Since the XKTC code

simulates a one-dimensional flow with area change, some compromise in geome-

tric aspects of the gun chamber is required. Figure 4 depicts both the actual

(solid line) and the XKTC (dashed line) representations of the geometry. In

the XKTC representation, the projectile fin assembly is compressed to a solid

cylinder which has a volume identical to its original volume. Thus, the total

chamber volume for gases and propellant remains unchanged.
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2.2 Input Data. The input data for the XKTC code include the physical

properties and internal dimensions of the gun tube, properties (chemical and

physical) and dimensions of propellant grains, and output rate as well as

venting distribution of igniter gases. Some of these data are given in the

following.

2.2.1 Gun Data.

Type 25-mm (rifled)

Travel (cm) 186.7

Groove Diameter (mm) 26

Land Diameter (mm) 25

Charge Volume (cm3) 94.06

XM881 Projectile Weight (grams) 126.2

XMB81 Projectile

Solid Line: Actual

Dashed Line: XKIrC Representation

Figure 4. Geometrical ReDresentation-of

Gun Chamber for XKTC Simulation.

2.2.2 Gun Bore Resistance. The bore resistance to the projectile motion

down the gun tube is difficult to measure accurately. It is a function of a

number of variables, such as the geometry and surface condition of the bore,

geometry and mechanical properties of the actuator, and acceleration of the

projectile. In the absence of experimental data, the values listed in Table 1

are determined by iteratively adjusting the bore resistance input into the

computer code until the calculated maximum pressure at the breech and muzzle

4



velocity matched reasonably well with gun firing test results (see Subsection

3.1.1 for the matching case).

Table 1. Gun Dore Resistance

Distance From Breech Bore Resistance

(cm) (inches) (MPa) (psi)

12.700 5.0 0.0 0.0

12.954 5.1 3.447 500.0

13.208 5.2 15.169 2200.0

13.716 5.4 16.203 2350.0

14.224 5.6 16.893 2450.0

38.100 15.0 3.448 500.0

198.120 78.0 0.689 100.0

2.2.3 Propellant Composition, Grain Dimensions, and Properties. Two

kinds of propellants are considered in the present simulations: single-base

(EXPRO Type 2164/2167) and nitramine composite HELP1. The composition of the

single-base propellant is given in Table 2. The HELP propellant (lot 900-48,

manufactured in the Naval Ordnance Station at Indian Head) is a high energy

LOVA propellant which is one of the potential candidates for the 25-mm cannon

system. Its composition is not given in this report due to classification.

The grain dimensions and properties are listed in Table 3.

Table 2. ComRosition of the Single-Base Propellant

Name Percentage Weight

NC(13.1%N) 93.883

MC 1.942

C 0.194

H20 1.068

KS 0.971

ETOH 0.971

DPA 0.971
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Table 3. Grain Dimensions and Properties

Single-Base HELP1

Density (g/cm 3) 1.6318 1.657

Outside Diameter (mm) 2.393 1.905

Perforation Diameter (mm) 0.1245 0.1524

Length (mm) 2.553 3.96

Number of perforations 7 7

Molecular Weight 24.022 21.71

Ratio of Specific Heats 1.2431 1.267

Covolume (cm3 /g) 1.0262 1.0969

Chemical Energy (cal/g) 973.5 1055.3

2.2.4 Burn Rates of Propellants.

Burn Rates From Closed Bomb Tests - see Table 4.

Table 4. Burn Rates From Closed Bomb Tests (cm/s)

Pressure Single-Base HELP1

(MPa) (kpsi) (cm/s) (in/s) (cm/s) (in/s)

13.79 2.0 1.351 0.532 0.406 0.16

20.68 3.0 0.737 0.29

34.47 5.0 1.956 0.77

62.06 9.0 4.65 1.8295

68.95 10.0 4.902 1.93

137.90 20.0 12.353 4.8633

172.37 25.0 8.585 3.38

275.80 40.0 23.641 9.3076

ADrOximate Burn Rates for Calculations

In Figure 5, the solid triangles and solid circles are the data points

tabulated in Table 4. The upper curve which closely fits the test data of the

6



single-base propellant is divided into three segments. The first segment

is the region below 62.06 MPa, the second segment ranges from 62.06 MPa to

137.9 MPa, and the third segment is the region greater than 137.9 MPa. These

three segments can be individually represented by three exponential functions

in the following form

Burn Rate (cm/s) - aPb

where a and b are constants and P is pressure in MPa. The values of "a" and

"b" for the three functions are given in Table 5. The dashed line is an

extrapolation of the segment in the low pressure region. For the HELP1 pro-

pellant, the data points from closed bomb tests in the low pressure region

seem to be unrealistic. In fact, using these data computer simulations show

that propagation of the flame through the propellant bed can not be sustained.

This is because, after the peak of the primer output rate has passed, the

amount of heat generated from the propellant ignition is less than the amount

of heat dissipated. Strand burner tests for the propellant under controlled

pressure values conducted by Miller at the BRL provide data represented by the

open circles (Miller 1989). These data are drastically different from the

40- A Closed Baub Data, Single-Base

* Closed Baob Data, HELPI

10- O Strand Burner Data, HELMi

Single-Base

1 Extrapolated. 0 H

0.4-

0.1 ! ! i ! , I ,1! i ! I i I

1 4 10 40 100 400

PRESSURE (MFa)

Figure 5. ProDellant Burn Rates
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closed bomb test results. It is believed that in the low pressure region the

strand burner data are more reliable for the present calculations. The curve

for HELP1 shown in the figure consists of two segments, each represented by

the above exponential function with constants "a" and "b" given in Table 5.

2.2.5 Igniter Material and Output Rates of Igniter Gases. The igniter

material in the M115 primer has a mass of 0.0999 gram and chemical energy of

605 cal/g. The BKNO 3 pellets inserted into the vented tubes in the MKI and

MK2 primers are single-perforation cylinders which have dimensions of 1.5 mm

by 4 mm by 4.5 mm (inside diameter by outside diameter by length). Each

pellet weighs 0.0422 gram and has chemical energy of 605.6 cal/g.

Table 6 lists the output rate of igniter combustion products at each

location measured from the breech end at a prescribed time after the start of

venting for each primer. These data are determined based on the total energy

available in the primer and the duration of venting. Measurements from the

simulator test (Chang and Bonanno 1987) show that the duration of venting of

igniter g:ses was approximately 1.5 milliseconds. Observations on the MKl and

Table 5. Approximate Burn Rates

Single-Base HELPI

Pressure Range a a

--- --- --- --- --- -- --- --- --- --- -- b-- - ------------------- b

(MPa) (kpsi) (cm/s) (in/s) (cm/s) (in/s)

< 62.06 < 9 0.54767 0.0010404 0.82067

62.06 - 137.9 9 - 20 0.01385 0.0000263 1.22444

> 137.9 > 20 0.24024 0.0004562 0.93647

0.0 - 6.895 0 - 1 0.0776 0.0001474 1.07180

> 6.895 > 1 0.1143 0.0006019 0.86688

where < means "less than" and > means "greater than".

8



MK2 primers show that the venting along the vented segment of the primer tube

was fairly uniform. In the table, it is noted that for the MK0 primer the

venting site is specified from the breech end surface to a distance 0.95 cm

away from the surface although there is no vented tube intruding into the pro-

pellant bed. This is because in reality the hot gases vented from the M115

primer can saturate the region covered by that range as observed in the

simulator test with inert propellant grains in a size similar to that of live

propellant grains (Chang and Bonanno 1987).

Table 6. Igniter Output Rate (g/cm-s)

MKO Primer MK1 Primer

Time ...............................................

(ms) 0.0* .635* .95* 1.27* 1.58* 1.90* 2.22* 2.54*

0.0 1047 1047 772 772 772 772 772 772

1.0 1047 1047 772 772 772 772 772 772

2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

MK2 Primer

T im e -----------------------------------------

(ms) 1.25* 1.58* 2.54* 3.17* 3.81* 4.44* 5.08*

0.0 470 470 470 470 470 470 470

1.0 470 470 470 470 470 470 470

2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Note: The digits with * are the distances measured from the breech end, cm.

3. COMPUTATIONAL RESULTS

In the following, we first present the calculated results for the single-

base charge with the XM881 projectile and the MKO primer since the firing data

for this round are available for validation. We then present the results for

both the single-base and HELP1 charges with the MK1 and MK2 primers fired at

ambient and -540 C.

9



3.1 Single-Base Charges.

3.1.1 At Ambient Temperature. Figure 6 shows the calculated pressure

profile at the breech for the single-base propelling charge with the MKO

primer fired at ambient temperature. It matches well with the test result

represented by the dashed line. In fact, the calculated muzzle velocity is

only 1 m/s less than the value measured in the test firing.

400 - Primer: MaO

. -: Simulated
--- -:Test

S300 Tea

a 200

100

0
0 1 2 3 4

TIME s)

Figure 6. Breech Pressures: Tested

and Simulated (Single-Base Charge)

Using the data base established for the bore resistance with this round,

calculations were then performed for charges with the MKI and MK2 primers. The

results are given in Table 7. Plots are provided in Figures 7 through 15 for

pressure, projectile velocity, projectile acceleration, mass fraction of

unburned propellant, and flamespreading. Based on these data, a comparison of

primer effectiveness for the three primer configurations are made as follows.

3.1.1.1 Pressure and Projectile Travel. In Table 7, we see that the peak

pressure, Pmax' increases progressively from the MKO to the MKl and to the

MK2. Figure 7 provides a direct comparison of the pressure profiles at the

breech. Apparently, the added vented tube in the MKI and MK2 primers has

10



significantly increased the pressurization rate in the chamber, as a result of

enhanced igniter output. This reduces the action time of the interior balli-

stic cycle from 2.81 milliseconds for the round with the MK0 primer to 2.58

milliseconds for the round with the MK2 primer. Figure 8 presents the same

pressure rises at the breech as a function of projectile travel rather than

time. This figure reveals that at the time the peak pressure arrives the

projectile has traveled only 15-20 cm, which is 8-10% of the total projectile

travel in the gun tube.

Table 7. Calculated Data for Single-Base Propelling Charges

Primer Ch. Wt. Temp. Pmax Vmuz Inc. Mas. Fr. F. Delay Act. Time

(g) (0C) (MPa) (%) (ms) (ms)

MKO 93 amb. 417 0.0 .0012 .42 2.81

MKI 93 amb. 447 2.1 .0008 .35 2.69

MK2 93 amb. 485 3.8 .0005 .30 2.58

MKO 93 -54 392 0.0** .0018 .53 2.92

MKI 93 -54 425 2.6** .0011 .46 2.80

MK2 93 -54 463 4.3** .0007 .42 2.69

Note: Ch. Wt. = total propelling charge weight.

Pmax = peak pressure at the breech.

Vmuz Inc. - percentage of increase in muzzle velocity over the muzzle

velocity of the charge with the MK0 primer. Note that "**" is in

reference to -540C rather than to ambient temperature. The actual

muzzle velocities are not given due to the restriction of

classification.

Mas. Fr. - mass fraction of unburned propellant at the time of shot

exit.

F. Delay - time required for the flame front traveling to the forward

end of the gun chamber.

Act. Time - total time elapsed from the start of venting of igniter

gases to the time that the projectile exits the gun tube.

amb. - ambient temperature, 210C.

11
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Figure 7. Breech ressure vs. Time

(Single-Base Charge).
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Figure 8. Breech Pressure vs. Pro lectile Travel

(Sinale-Base Charge).
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Figures 9 and 10 exhibit a series of pressure-time and pressure-

projectile travel traces at locations of interest (breech, forward end of the

gun chamber, and projectile base). In general, the pressure profiles are quite

similar except that the peak pressures for the rounds with the MKI and MK2

primers are higher. In Figure 9, dP is the value of the breech pressure minus

the forward pressure in the gun chamber. The value can be of concern when it

becomes a large negative value which is associated with "pressure waves" in

the gun chamber. In the figures, the negative dP ranges from -6 MPa for the

MKO primer to -3 MPa for the MK2 primer, which are considered small values.

The results in Figure 10 may be useful to the projectile designer. Maximum

projectile base pressure is 71-72 % of the maximum breech pressure, and the

pressure difference P between the breech and the projectile base can be more

than 130 MPa.

I I ' I I I I

450 Primer: MKO Breech

o 350

so- -

-50
-so,, I I II

0 .5 1 1.5 2 2.5 3
TIME (MS)

Figure 9. Pressures at Breech and Forward-End of Gun Chamber

and Their Differential (Single-Base Charge)
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0 .5 1 1.5 2 2,5 3
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Figure 9. (Cont'd).

II I I I

450 Primer: N(2 - Breech

o 3s0

250

) 150

0 so

-50 i
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TIME (MS)

Figure 9. (Cont'd).
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Figure 10. Pressures at Breech and Projectile Base and

Their Differential (Single-Base Charge).
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Figure 10. (Cont'd).
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Figure 10. (Cont'd)

3.1.1.2 Projectile Acceleration. In Figure 11 the dashed lines represent

projectile accelerations, showing that the MK2 primer results in the highest

acceleration. As a result, the projectile velocity is increased by 3.8% over

the round with the MKO primer, as indicated in Table 7. It is noted that the

maximum projectile acceleration occurs at the same projectile travel as the

maximum breech pressure does. At this point, the projectilje travel is about

17 cm which is 9% of the total projectile travel in the gun tube.

3.1.1.3 Mass Fraction of Unburned Propellant. Figure 12 is a plot of the

unburned mass fraction of propellant versus projectile travel, showing that

the mass is consumed very quickly in the first 20 cm of the projectile travel.

3.1.1.4 Flamespreading. Flamespreading in the propellant bed plays a key

role in governing the interior ballistic cycle. Effectiveness of an ignition

system is often characterized by its ability to achieve fast and uniform

flamespreading, so that localized pressurization is avoided. Each of the

three curves in Figure 13 shows the trace of the flame front from the start of

venting of igniter gases. In the charge with the MK1( primer, the primer
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direction toward the forward end of the chamber. In the charge with the MKI

primer, the primer output is distributed over the vented segment of the primer

tube, which ranges from 1 cm to 2.5 cm from the breech end. Flame should

uniformly cover that range following the functioning of the primer. In the

figure, however, instead of a straight line, the curve appears to be highly

irregular in that range. This behavior does not seem realistic and likely

results from the numerical solution of the present one-dimensional flow

computer code. When treated as a one-dimensional flow, there is a stagnation

region in the mid-section of the vented primer tube during the very early

period of flamespreading. In this region, there is no convective heating to

the propellant and, therefore, there is a delay of flamespreading as shown in

the figure. Immediately after its appearance, the flame spreads in two

directions: one toward the breech end and the other toward the forward end of

the chamber. In the case of using MK2 primer which has a longer vented tube,

the initial flame coverage is even larger. A comparison of the three curves

clearly indicates that a long primer tube can significantly reduce the

flamespread delay.
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Figure 13. Flamespread Delay (Single-Base Charge)
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In Figure 14, we have noticed an interesting correlation between the

flamespreading and the early pressure rise at the breech. The correlation is

that rapid flamespreading results in a rapid pressure rise. However, this

correlation may not necessarily be true in large ammunition, where in the case

of localized ignition near the breech, the breech pressure may rise very

rapidly in spite of slow flamespreading. In the figure we also have noticed

that at the time the flame reaches the forward end of the chamber, the

pressures for all of the three primers have reached almost the same level, 25

MPa, as indicated by the dashed lines.

A 120 120

100 100 .
WW 80 - MKl J 80

~60 -60 Cc

40 - 40

20 ?0 

0 0 MKO Mn 0

0 ,I .2 ,3 .4
TIME (MS)

Figure 14. Correlation Between Flamespread Delay and

Breech Pressure Rise (Single-Base Charge).

In the simulator tests (Chang and Bonanno 1987) with the MKO primer, a

charge weight of 93 grams would fill the chamber leaving no ullage. This is

the same charge weight used in the gun firing tests. When subjected to

vibrations, the same charge weight would also fill in the rounds with the MKI

and MK2 primers. In addition to using 93 grams, XKTC simulations were carried

out for the rounds with a reduced charge weight to account for the volume

occupied by the added primer tubes. The resultant charge weights are 92.4
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grams and 91.6 grams for the rounds with the MKl primer and MK2 primer,

respectively. In Table 8, the results show that even at a reduced charge

weight there is still a noticeable improvement in muzzle velocity for rounds

using the MK1 and MK2 primers over the MKO primer. It is believed that the

consistency of ballistic performance in actual firings can be improved in

using the MKI and MK2 primers.

Table 8. Calculated Data for Single-Base Propelling

Charges at Reduced Charge Weights

Primer Ch. Wt. Temp. Pmax Vmuz Inc. Mas. Fr. F. Delay Act. Time

(grams) (°C) (MPa) % (ms) (ms)

MK0 93.0 amb. 417 0.0 .0012 .42 2.81

MK1 92.4 amb. 435 1.4 .0009 .35 2.72

MK2 91.6 amb. 452 2.0 .0008 .24 2.56

Note: Vmuz Inc. - percentage of increase in muzzle veloc.ity over the muzzle

velocity of the charge with the MKO primer.

3.1.2 At -540C (-65 0 F). The results for the rounds at -54°C are also

given in Table 7. As expected, both the peak pressure and muzzle velocity

drop to some extent in comparison to the values for ambient temperature. The

mass fraction of unburned propellant at shot exit is increased. Furthermore,

the ballistic action time is longer. All of these data are the indication of

a slower and less complete combustion process occurring in the cold rounds.

We also note that there is a larger difference in muzzle velocity from using

one kind of primer to the another in the rounds at a cold temperature than at

ambient temperature. For instance, at ambient temperature the velocity

increase for the MK2 primer over the MK0 primer is 3.8%, while at -54°C the

increase is 4.3%. The implication is that at cold temperatures, the ballistic

performance is more sensitive to the primer configuration. Thus, for cold

rounds there is a stronger need to use a highly effective ignition system in

order to achieve required ballistic performance.
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3.2 HELPI Charges. Following the same procedure as for the single-base

charges, calculations were carried out for HELPI charges using the three primer

configurations. Results obtained are listed in Table 9 and plotted in Figures

15 through 17. At either ambient temperature or -540 C, both the peak pressure

at the breech and the muzzle velocity increase progressively from the charge

using the MKO primer to the charge using the MK2 primer. The mass fraction of

unburned propellant and the action time of the ballistic cycle, both decrease

in the rounds using MII and MK2 primers. Again, the indication is that the

overall ballistic performance has been influenced by the selection of primer

configuration, as seen earlier in the single-base propelling charges.

Table 9. Calculated Data for HELP Propelling Charges

Primer Ch. Wt. Temp. Pmax Vmuz Inc. Mas. Fr. F. Delay Act. Time

(grams) (°C) (MPa) () (ms) (ms)

MKO 93 amb. 401 0.0 .0076 .45 2.73

MK1 93 amb. 427 2.4 .0059 .39 2.62

MK2 93 amb. 461 4.1 .0047 .35 2.54

MK0 93 -54 377 0.0"* .0090 .55 2.84

MK1 93 -54 405 3.3** .0063 .50 2.71

MK2 93 -54 444 4.9** .0052 .45 2.63

Note: "**" is in reference to -54°C rather than to ambient temperature.
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Figure 17. Flamespread Delay (HELP Charge).

3.3 Comparison of Ballistic Performance Between the Single-Base Charge

and the HELP1 Charge. In comparing Table 7 with Table 9 for the calculated

data, several different characteristics of interest between the single-base

propellant and the HELP1 propellant are noticed as follows.

o Using the same primer configuration the Pmax is lower for the HELP charge;

however, the muzzle velocity is higher. This may be explained as a result of

a lower burn rate (see Figure 5) but a higher energy for the HELP1 propellant.

o The flamespread delay for the HELP charge is longer, but its ballistic

action time turns out to be shorter. The longer flamespread delay is attri-

buted to a higher ignition temperature (in the calculations, the temperature

inputs are 850°R for the HELP1 propellant and 800°R for the single-base

propellant) and a lower burn rate. The shorter ballistic action time seems to

be a result of its higher energy.

o The improvement of ballistic performance by using the MKI and MK2 primers

over the MKO primer is greater for the HELP1 charge, implying that the HELP

charge is more sensitive to the selection of primer configuration.
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3.4 Effects of Primer Output Rate on Ballistic Performance. It is

expected that an increase in the output rate of igniter gases will reduce the

ignition delay of propellant. Nevertheless, it is unknown whether the

increase will result in a higher chamber pressure and a greater muzzle

velocity in the charges under consideration for the 25-mm gun system. The

answer is of interest to charge developers. We select the MK2 primer for

investigation because the primer permits a wider variation of the number of

BKN0 3 pellets to be inserted. Table 10 presents results for both the single-

base and the HELP1 charges in which the number of BKNO3 pellets varies from 2

to 8. Surprisingly, the table shows that the variation produces little change

in Pmax and muzzle velocity. For an explanation, we note in Figure 18 that the

pressurization rate (i.e. the quickness of pressure rise) in the early stage

of the interior ballistic cycle increases with the number of BKNO 3 pellets.

Table 10. Effects of Weight Variation of Igniter Material

Prop. Primer No. of Ch. Wt. Pmax Vmuz Inc. Mas. Fr. F. Delay Act. Time

Pellets (grams) (MPa) (%) (ms) (ms)

S-B MKO 0 93 417 0.0 .0012 .42 2.81

S-B MK2 2 93 486 3.8 .0005 .37 2.67

S-B MK2 4 93 485 3.8 .0005 .30 2.58

S-B MK2 6 93 484 3.8 .0006 .26 2.54

S-B M!<2 8 93 484 3.8 .0006 .24 2.50

HELP1 MK0 0 93 401 0.0 .0076 .45 2.73

HELPI MK2 2 93 462 4.2 .0046 .44 2.64

HELP1 MK2 4 93 461 4.2 .0047 .35 2.54

HELPI MK2 6 93 459 4.2 .0049 .30 2.47

HELP1 MI<2 8 93 459 4.2 .0050 .28 2.44

where S-B - single-base.

As a result, projectile motion takes place earlier in the case with more BKNO3

pellets. The earlier projectile motion produces an increased chamber volume

behind the projectile and thus the maximum chamber pressure does not increase
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with the number of BKNO 3 pellets inserted. However, these results may not be

true for a large caliber tank charge, such as the 105-mm and 120-mm systems,

in light of its much larger and much longer propellant bed.

500 
i

400 N Pellets

o 2

300 4

6
200 8

0

0 .5 1 1,S 2 2. S 3

TIME (MS)

Figure 18. Effect of Primer Output Rate on Breech

Pressure (Single-Base Charge).

4. CONCLUSIONS

Calculated results for the single-base and HELP1 charges at ambient and

-540 C show that the addition of a vented primer tube intruding into the

propellant bed improves the muzzle velocity and reduces the action time of the

interior ballistic cycle. This correlates well with the previous experimental

results that the primer tube improves the uniformity of pressure distribution

and the flamespreading along the propellant bed in the early ignition phase;

the longer the primer tube, the better improvement in muzzle velocity.

There are differences in ballistic characteristics between the convention-

al single-base propellant and the nitramine composite HELP1 propellant con-

sidered. Typically, (1) flamespreading is slower in the HELP1 charge and (2)
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of primer configuration.

For both charges, single-base and HELPI, the ballistic performance is more

sensitive to primer configuration when they are at -540 C than at ambient

temperature.

An increase in the MK2 primer output rate does not influence the peak

pressure and the muzzle velocity in the charges studied. However, the action

time of the interior ballistic cycle is noticeably reduced.

Some other results of interest are noted as follows:

o Maximum breech pressure -- occurs when the projectile travels 15-20 cm

from the breech end (8-10% of the total projectile travel in the gun tube).

o Maximum projectile base pressure -- is about 72% of the maximum breech

pressure.

o Propellant mass fraction -- unburned propellant mass decreases very rapidly

during the first 20 cm of projectile travel.
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